Тип редуктора
Передаточное число [I]
Крутящий момент редуктора
Эксплуатационный коэффициент (сервис-фактор)
Мощность привода
Коэффициент полезного действия (КПД)
Взрывозащищенные исполнения
Показатели надежности
Сервис расчета привода
В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.
При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
ВАЖНО!
Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.
Таблица 1. Классификация редукторов по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
---|---|---|---|
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 |
Коническая Цилиндрическая (одна или несколько) |
Пересекающееся/скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная (одна или две) | Скрещивающееся |
1 | Параллельное | ||
Цилиндрическо-червячный или червячно-цилиндрический | 2 |
Цилиндрическая (одна или две) Червячная (одна) |
Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 |
Цилиндрическая (одна или несколько) Планетарная (одна или несколько) |
Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 |
Червячная (одна) Планетарная (одна или несколько) |
Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где
N1 – скорость вращения вала (количество об/мин) на входе;
N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
---|---|
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО!
Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент {M2max] – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где
Mr2 – необходимый крутящий момент;
Sf – сервис-фактор (эксплуатационный коэффициент);
Mn2 – номинальный крутящий момент.
Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.
Таблица 3. Параметры для расчета эксплуатационного коэффициента
Тип нагрузки | К-во пусков/остановок, час | Средняя продолжительность эксплуатации, сутки | |||
---|---|---|---|---|---|
<2 | 2-8 | 9-16h | 17-24 | ||
Плавный запуск, статичный режим эксплуатации, ускорение массы средней величины | <10 | 0,75 | 1 | 1,25 | 1,5 |
10-50 | 1 | 1,25 | 1,5 | 1,75 | |
80-100 | 1,25 | 1,5 | 1,75 | 2 | |
100-200 | 1,5 | 1,75 | 2 | 2,2 | |
Умеренная нагрузка при запуске, переменный режим, ускорение массы средней величины | <10 | 1 | 1,25 | 1,5 | 1,75 |
10-50 | 1,25 | 1,5 | 1,75 | 2 | |
80-100 | 1,5 | 1,75 | 2 | 2,2 | |
100-200 | 1,75 | 2 | 2,2 | 2,5 | |
Эксплуатация при тяжелых нагрузках, переменный режим, ускорение массы большой величины | <10 | 1,25 | 1,5 | 1,75 | 2 |
10-50 | 1,5 | 1,75 | 2 | 2,2 | |
80-100 | 1,75 | 2 | 2,2 | 2,5 | |
100-200 | 2 | 2,2 | 2,5 | 3 |
Правильно рассчитанная мощность привода помогает преодолевать механическое сопротивление трения, возникающее при прямолинейных и вращательных движениях.
Элементарная формула расчета мощности [Р] – вычисление соотношения силы к скорости.
При вращательных движениях мощность вычисляется как соотношение крутящего момента к числу оборотов в минуту:
P = (MxN)/9550
где
M – крутящий момент;
N – количество оборотов/мин.
Выходная мощность [P2] вычисляется по формуле:
P2 = P x Sf
где
P – мощность;
Sf – сервис-фактор (эксплуатационный коэффициент).
ВАЖНО!
Значение входной мощности всегда должно быть выше значения выходной мощности, что оправдано потерями при зацеплении:
P1 > P2
Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.
Расчет КПД рассмотрим на примере червячного редуктора. Он будет равен отношению механической выходной мощности и входной мощности:
ñ [%] = (P2/P1) x 100
где
P2 – выходная мощность;
P1 – входная мощность.
ВАЖНО!
В червячных редукторах P2 < P1 всегда, так как в результате трения между червячным колесом и червяком, в уплотнениях и подшипниках часть передаваемой мощности расходуется.
Чем выше передаточное отношение, тем ниже КПД.
На КПД влияет продолжительность эксплуатации и качество смазочных материалов, используемых для профилактического обслуживания мотор-редуктора.
Таблица 4. КПД червячного одноступенчатого редуктора
Передаточное число | КПД при aw, мм | ||||||||
---|---|---|---|---|---|---|---|---|---|
40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | |
8,0 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 | 0,95 | 0,96 |
10,0 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 | 0,95 |
12,5 | 0,86 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 |
16,0 | 0,82 | 0,84 | 0,86 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 |
20,0 | 0,78 | 0,81 | 0,84 | 0,86 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 |
25,0 | 0,74 | 0,77 | 0,80 | 0,83 | 0,84 | 0,85 | 0,86 | 0,87 | 0,89 |
31,5 | 0,70 | 0,73 | 0,76 | 0,78 | 0,81 | 0,82 | 0,83 | 0,84 | 0,86 |
40,0 | 0,65 | 0,69 | 0,73 | 0,75 | 0,77 | 0,78 | 0,80 | 0,81 | 0,83 |
50,0 | 0,60 | 0,65 | 0,69 | 0,72 | 0,74 | 0,75 | 0,76 | 0,78 | 0,80 |
Таблица 5. КПД волнового редуктора
Передаточное число | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 |
---|---|---|---|---|---|---|---|---|
КПД | 0,83 | 0,82 | 0,80 | 0,78 | 0,75 | 0,72 | 0,70 | 0,65 |
Таблица 6. КПД зубчатых редукторов
Тип редуктора | КПД |
---|---|
Цилиндрический и конический одноступенчатый | 0,98 |
Цилиндрический и коническо-цилиндрический двухступенчатый | 0,97 |
Цилиндрический и коническо-цилиндрический трехступенчатый | 0,96 |
Цилиндрический и коническо-цилиндрический четырехступенчатый | 0,95 |
Планетарный одноступенчатый | 0,97 |
Планетарный двухступенчатый | 0,95 |
Мотор-редукторы данной группы классифицируются по типу взрывозащитного исполнения:
Показатели надежности мотор-редукторов приведены в таблице 7. Все значения приведены для длительного режима эксплуатации при постоянной номинальной нагрузке. Мотор-редуктор должен обеспечить 90% указанного в таблице ресурса и в режиме кратковременных перегрузок. Они возникают при пуске оборудования и превышении номинального момента в два раза, как минимум.
Таблица 7. Ресурс валов, подшипников и передач редукторов
Показатель | Тип редуктора | Значение,ч |
---|---|---|
90% ресурса валов и передач | Цилиндрический, планетарный, конический, коническо-цилиндрический | 25000 |
90% ресурса подшипников | Червячный, волновой, глобоидный | 10000 |
Цилиндрический, планетарный, конический, коническо-цилиндрический | 12500 | |
Червячный | 5000 | |
Глобоидный, волновой | 10000 |
По вопросам расчета и приобретения мотор редукторов различных типов обращайтесь к нашим специалистам. Здесь можно ознакомиться с каталогом червячных, цилиндрических, планетарных и волновых мотор-редукторов, предлагаемых компанией Техпривод.
Романов Сергей Анатольевич,
руководитель отдела механики
компании Техпривод.
Другие полезные материалы:
Как правильно подобрать электродвигатель
Редуктор от «А» до «Я»
Выбор преобразователя частоты
Подключение и настройка частотного преобразователя
Схемы подключения устройства плавного пуска